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Abstract
Objective
To develop and validate a pragmatic risk score to 
predict mortality in patients admitted to hospital with 
coronavirus disease 2019 (covid-19).
Design
Prospective observational cohort study.
Setting
International Severe Acute Respiratory and 
emerging Infections Consortium (ISARIC) World 
Health Organization (WHO) Clinical Characterisation 
Protocol UK (CCP-UK) study (performed by the ISARIC 
Coronavirus Clinical Characterisation Consortium—
ISARIC-4C) in 260 hospitals across England, Scotland, 
and Wales. Model training was performed on a cohort 
of patients recruited between 6 February and 20 
May 2020, with validation conducted on a second 
cohort of patients recruited after model development 
between 21 May and 29 June 2020.
Participants
Adults (age ≥18 years) admitted to hospital with covid-19 
at least four weeks before final data extraction.

Main outcome measure
In-hospital mortality.
Results
35 463 patients were included in the derivation 
dataset (mortality rate 32.2%) and 22 361 in the 
validation dataset (mortality rate 30.1%). The final 
4C Mortality Score included eight variables readily 
available at initial hospital assessment: age, sex, 
number of comorbidities, respiratory rate, peripheral 
oxygen saturation, level of consciousness, urea level, 
and C reactive protein (score range 0-21 points). The 
4C Score showed high discrimination for mortality 
(derivation cohort: area under the receiver operating 
characteristic curve 0.79, 95% confidence interval 
0.78 to 0.79; validation cohort: 0.77, 0.76 to 0.77) 
with excellent calibration (validation: calibration-
in-the-large=0, slope=1.0). Patients with a score 
of at least 15 (n=4158, 19%) had a 62% mortality 
(positive predictive value 62%) compared with 1% 
mortality for those with a score of 3 or less (n=1650, 
7%; negative predictive value 99%). Discriminatory 
performance was higher than 15 pre-existing risk 
stratification scores (area under the receiver operating 
characteristic curve range 0.61-0.76), with scores 
developed in other covid-19 cohorts often performing 
poorly (range 0.63-0.73).
Conclusions
An easy-to-use risk stratification score has been 
developed and validated based on commonly 
available parameters at hospital presentation. The 4C 
Mortality Score outperformed existing scores, showed 
utility to directly inform clinical decision making, and 
can be used to stratify patients admitted to hospital 
with covid-19 into different management groups. The 
score should be further validated to determine its 
applicability in other populations.
Study registration
ISRCTN66726260

Introduction
Disease resulting from infection with severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has a high mortality rate with deaths predominantly 
caused by respiratory failure.1 As of 1 September 2020, 
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What is already known on this topic
Robust, validated clinical prediction tools are lacking that identify patients with 
coronavirus disease 2019 (covid-19) who are at the highest risk of mortality
Given the uncertainty about how to stratify patients with covid-19, considerable 
interest exists in risk stratification scores to support frontline clinical decision 
making
Available risk stratification tools have a high risk of bias, small sample size 
resulting in uncertainty, poor reporting, and lack formal validation

What this study adds
Most existing covid-19 risk stratification tools performed poorly in our cohort; 
caution is needed when novel tools based on small patient populations are 
applied to cohorts in hospital with covid-19
The 4C (Coronavirus Clinical Characterisation Consortium) Mortality Score is 
an easy-to-use and valid prediction tool for in-hospital mortality, accurately 
categorising patients as being at low, intermediate, high, or very high risk of 
death
This pragmatic and clinically applicable score outperformed other risk 
stratification tools, showed clinical decision making utility, and had similar 
performance to more complex models
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over 25 million people had confirmed coronavirus 
disease 2019 (covid-19) worldwide and at least 
850 000 people had died from the disease.2 3 As 
hospitals around the world are faced with an influx 
of patients with covid-19, there is an urgent need for 
a pragmatic risk stratification tool that will allow the 
early identification of patients infected with SARS-
CoV-2 who are at the highest risk of death to guide 
management and optimise resource allocation.

Prognostic scores attempt to transform complex 
clinical pictures into tangible numerical values. 
Prognostication is more difficult when dealing with 
a severe pandemic illness such as covid-19 because 
strain on healthcare resources and rapidly evolving 
treatments alter the risk of death over time. Early 
information has suggested that the clinical course 
of a patient with covid-19 is different from that of 
pneumonia, seasonal influenza, or sepsis.4 Most 
patients with severe covid-19 have developed a clinical 
picture characterised by pneumonitis, profound 
hypoxia, and systemic inflammation affecting multiple 
organs.1

A recent review identified many prognostic scores 
used for covid-19,5 which varied in their setting, pre
dicted outcome measure, and the clinical parameters 
included. The large number of risk stratification tools 
reflects difficulties in their application, with most scores 
showing moderate performance at best and no benefit 
to clinical decision making.6 7 Many novel covid-19 
prognostic scores have been found to have a high 
risk of bias, which could reflect development in small 
cohorts, and many have been published without clear 
details of model derivation and testing.5 Therefore, a 
risk stratification tool within a large national cohort of 
patients admitted to hospital with covid-19 is needed 
with clear development and validation details.

Our aim was to develop and validate a pragmatic, 
clinically relevant risk stratification score that uses 
routinely available clinical information at hospital 
presentation to predict in-hospital mortality in patients 
admitted to hospital with covid-19. We then aimed to 
compare this score with existing prognostic models.

Methods
Study design and setting
The International Severe Acute Respiratory and 
emerging Infections Consortium (ISARIC) World 
Health Organization (WHO) Clinical Characterisation 
Protocol UK (CCP-UK) study is an ongoing prospective 
cohort study. The study is being performed by 
the ISARIC Coronavirus Clinical Characterisation 
Consortium (ISARIC-4C) in 260 hospitals across 
England, Scotland, and Wales (National Institute for 
Health Research Clinical Research Network Central 
Portfolio Management System ID 14152). The protocol 
and further study details are available online.8 Model 
development and reporting followed the TRIPOD 
(transparent reporting of a multivariable prediction 
model for individual prediction or diagnosis) guide
lines.9 The study is being conducted according to a 
predefined protocol (appendix 1).

Participants
The study recruited consecutive patients aged 18 
years and older with a completed index admission to 
one of 260 hospitals in England, Scotland, or Wales.8 
Reverse transcriptase polymerase chain reaction was 
the only mode of testing available during the period 
of study. The decision to test was at the discretion of 
the clinician attending the patient, and not defined 
by protocol. The enrolment criterion “high likelihood 
of infection” reflected that a preparedness protocol 
cannot assume a diagnostic test will be available for 
an emergent pathogen. In this activation, site training 
emphasised the importance of only recruiting proven 
cases.

Data collection
Demographic, clinical, and outcome data were 
collected by using a prespecified case report form. 
Comorbidities were defined according to a modified 
Charlson comorbidity index.10 Comorbidities collected 
were chronic cardiac disease, chronic respiratory 
disease (excluding asthma), chronic renal disease 
(estimated glomerular filtration rate ≤30), mild to 
severe liver disease, dementia, chronic neurological 
conditions, connective tissue disease, diabetes mellitus 
(diet, tablet, or insulin controlled), HIV or AIDS, and 
malignancy. These conditions were selected a priori 
by a global consortium to provide rapid, coordinated 
clinical investigation of patients presenting with any 
severe or potentially severe acute infection of public 
interest and enabled standardisation.

Clinician defined obesity was also included as a 
comorbidity owing to its probable association with 
adverse outcomes in patients with covid-19.11 12 The 
clinical information used to calculate prognostic scores 
was taken from the day of admission to hospital.13 
A practical approach was taken to sample size 
requirements.14 We used all available data to maximise 
the power and generalisability of our results. Model 
reliability was assessed by using a temporally distinct 
validation cohort with geographical subsetting, 
together with sensitivity analyses.

Outcomes
The primary outcome was in-hospital mortality. This 
outcome was selected because of the importance of the 
early identification of patients likely to develop severe 
illness from SARS-CoV-2 infection (a rule in test). We 
chose to restrict analysis of outcomes to patients who 
were admitted more than four weeks before final data 
extraction (29 June 2020) to enable most patients to 
complete their hospital admission.

Independent predictor variables
A reduced set of potential predictor variables was 
selected a priori, including patient demographic 
information, common clinical investigations, and 
parameters consistently identified as clinically 
important in covid-19 cohorts following the methods 
described by Wynants and colleagues (appendix 2).5 
Candidate predictor variables were selected based on 
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three common criteria15: patient and clinical variables 
known to influence outcome in pneumonia and flu-
like illness; clinical biomarkers previously identified 
within the literature as potential predictors in patients 
with covid-19; values available for at least two thirds of 
patients within the derivation cohort.

Because our overall aim was to develop an easy-to-
use risk stratification score, we made the decision to 
include an overall comorbidity count for each patient 
within model development giving each comorbidity 
equal weight, rather than individual comorbidities. 
Recent evidence suggests an additive effect of 
comorbidity in patients with covid-19, with increasing 
number of comorbidities associated with poorer 
outcomes.16

Model development
Missing values for potential candidate variables were 
handled by using multiple imputation with chained 
equations, under the missing at random assumption 
(appendix 6). Ten sets, each with 10 iterations, were 
imputed using available explanatory variables for 
both cohorts (derivation and validation). The outcome 
variable was included as a predictor in the derivation 
dataset but not the validation dataset. All model 
derivation and validation was performed in imputed 
datasets, with Rubin’s rules17 used to combine results.

Models were trained by using all available data up 
to 20 May 2020. The primary intention was to create a 
pragmatic model for bedside use not requiring complex 
equations, online calculators, or mobile applications. 
An a priori decision was therefore made to categorise 
continuous variables in the final prognostic score.

We used a three stage model building process (fig 
1). Firstly, generalised additive models were built 
incorporating continuous smoothed predictors 
(penalised thin plate splines) in combination with 
categorical predictors as linear components. A criterion 
based approach to variable selection was taken 
based on the deviance explained, the unbiased risk 
estimator, and the area under the receiver operating 
characteristic curve. Secondly, we visually inspected 
plots of component smoothed continuous predictors 
for linearity, and selected optimal cut-off values by 
using the methods of Barrio and colleagues.18

Lastly, final models using categorised variables were 
specified with least absolute shrinkage and selection 
operator logistic regression. L1 penalised coefficients 
were derived using 10-fold cross validation to select 
the value of lambda (minimised cross validated sum of 
squared residuals). We converted shrunk coefficients 
to a prognostic index with appropriate scaling to create 
the pragmatic 4C Mortality Score (where 4C stands for 
Coronavirus Clinical Characterisation Consortium).

We used machine learning approaches in parallel 
for comparison of predictive performance. Given issues 
with interpretability, this was intended to provide a 
best-in-class comparison of predictive performance 
when accounting for any complex underlying 
interactions. Gradient boosting decision trees were 
used (XGBoost). All candidate predictor variables 

identified were included within the model, except for 
those with high missing values (>33%). We retained 
individual major comorbidity variables within the 
model to determine whether inclusion improved 
predictive performance. An 80%/20% random split 
of the derivation dataset was used to define train and 
test sets. The validation datasets were held back and 
not used in the training process. We used a mortality 
label and design matrix of centred or standardised 
continuous and categorical variables including all 
candidate variables to train gradient boosted trees 
minimising the binary classification error rate (defined 
as number of wrong cases divided by number of all 
cases). Hyperparameters were tuned, including the 
learning rate and maximum tree depth, to maximise 
the area under the receiver operating characteristic 
curve in the test set. This approach affords flexibility 
in the handling of missing data; therefore, two models 
were trained and optimised, one using imputed data 
and the other modelling missingness in complete case 
data.

We assessed discrimination for all models by using 
the area under the receiver operating characteristic 
curve in the derivation cohort, with 95% confidence 
intervals calculated by bootstrapped resampling 
(2000 samples). A value of 0.5 indicates no predictive 
ability, 0.8 is considered good, and 1.0 is perfect.19 We 
assessed overall goodness of fit with the Brier score,20 
a measure to quantify how close predictions are to the 
truth. The score ranges between 0 and 1, where smaller 
values indicate superior model performance. We 
plotted model calibration curves to examine agreement 
between predicted and observed risk across deciles of 
mortality risk to determine the presence of over or under 
prediction. Risk cut-off values were defined by the 
total point score for an individual, which represented 
low (<2% mortality rate), intermediate (2-14.9%), or 
high risk (≥15%) groups, similar to commonly used 
pneumonia risk stratification scores.21 22

We performed sensitivity analyses by using complete 
case data. Model discrimination was also checked in 
ethnic groups and by sex using imputed datasets.

Model validation
Patients entered into the ISARIC WHO CCP-UK  
study after 20 May 2020 were included in a 
separate validation cohort (fig 1). We determined 
discrimination, calibration, and performance across a 
range of clinically relevant metrics. To avoid bias in the 
assessment of outcomes, patients who were admitted 
within four weeks of data extraction on 29 June 2020 
were excluded. We included patients without an 
outcome after four weeks and considered to have had 
no event.

A sensitivity analysis was also performed, with 
stratification of the validation cohort by geographical 
location. We selected this geographical categorisation 
based on well described economic and health 
inequalities between the north and south of the United 
Kingdom.23 24 Recent analysis has shown the impact of 
deprivation on risk of dying with covid-19.25 As a result, 
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population differences between regions could change 
the discriminatory performance of risk stratification 
scores. Two geographical cohorts were created, based 
on north-south geographical locations across the UK 

as defined by Hacking and colleagues.23 We performed 
a further sensitivity analysis to determine model 
performance in ethnic minority groups given the 
reported differences in covid-19 outcomes.26

Derivation dataset
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for sensitivity analysis

Validation
north subset
(n=13 769)

Multiple imputation

Validation dataset
ISARIC CCP-UK
data collected
subsequent to

primary analysis
(n=22 361)

Validation
south subset

(n=8592)

Multiple imputation

Multivariable imputation
  by chained equations
28 predictor variables
10 iterations, 10 imputed sets
Distributions inspected and
  convergence confirmed

All variables retained

Comparison with existing scores

Component smoothed
functions on scale of
linear predictor from
GAM model used

15 pre-existing scores
derived in covid-19
and non-covid-19
settings

Prognostic index
derivation using
L1-penalised regression
coefficients

Predicted
versus observed
mortality across
deciles of risk

Primary validation Secondary validation

Sensitivity
Specficity
PPV
NPV
AUROC
Brier score
Calibration

Continuous variables
  with thin plate splines
Parametric categorical
  variables
Criterion based model
  selection:
    Deviance explained

Gradient boosting
  decision tree
Random 80/20%
  training/test split
Trained on binary
  classification error
Missing data modelled

Variables not contributing
to model fit excluded

Variables (n=13)

Fig 1 | Model derivation and validation workflow. AUROC=area under the receiver operating characteristic curve; covid-19=coronavirus disease 
2019; ISARIC CCP-UK=International Severe Acute Respiratory and emerging Infections Consortium Clinical Characterisation Protocol UK; 
NPV=negative predictive value; PPV=positive predictive value
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All tests were two tailed and P values less than 0.05 
were considered statistically significant. We used R 
(version 3.6.3) with the finalfit, mice, glmnet, pROC, 
recipes, xgboost, rmda, and tidyverse packages for all 
statistical analysis.

Comparison with existing risk stratification scores
All derived models in the derivation dataset were 
compared within the validation cohort with existing 
scores. We assessed model performance by using the 
area under the receiver operating characteristic curve 
statistic, sensitivity, specificity, positive predictive 
value, and negative predictive value. Existing 
risk stratification scores were identified through 
a systematic literature search of Embase, WHO 
Medicus, and Google Scholar databases. We used the 
search terms “pneumonia,” “sepsis,” “influenza,” 
“COVID-19,” “SARS-CoV-2,” “coronavirus” combined 
with “score” and “prognosis.” We applied no language 
or date restrictions. The last search was performed on 
1 July 2020. Risk stratification tools were included 
whose variables were available within the database 
and had accessible methods for calculation.

We calculated performance characteristics accor
ding to original publications, and selected score cut-
off values for adverse outcomes based on the most 
commonly used criteria identified within the literature. 
Cut-off values were the score value for which the 
patient was considered at low or high risk of adverse 
outcome, as defined by the study authors. Patients 
with one or more missing input variables were omitted 
for that particular score.

We also performed a decision curve analysis.27 
Briefly, assessment of the adequacy of clinical predic
tion models can be extended by determining clinical 
utility. By using decision curve analysis, we can make 
a clinical judgment about the relative value of benefits 
(treating a true positive) and harms (treating a false 
positive) associated with a clinical prediction tool. 
The standardised net benefit was plotted against the 
threshold probability for considering a patient high 
risk for age alone and for the best discriminating 
models applicable to more than 50% of patients in the 
validation cohort.

Patient and public involvement
This was an urgent public health research study in 
response to a Public Health Emergency of International 
Concern. Patients or the public were not involved in 
the design, conduct, or reporting of this rapid response 
research.

Results
We collected data from 35 463 patients between 6 
February 2020 and 20 May 2020 in the derivation 
cohort; 1275 (3.6%) patients had no outcome recorded 
and were considered alive. The overall mortality 
rate was 32.2% (11 426 patients). The median age 
of patients in the cohort was 73 years (interquartile 
range 59-83); 41.7% (14 741) were female and 76.0% 
(26 966) had at least one comorbidity. Table 1 shows 

demographic and clinical characteristics for the 
derivation and validation datasets.

Model development
We identified 41 candidate predictor variables 
measured at hospital admission for model creation 
(fig 1, appendix 2). After the creation of a composite 
variable containing all seven individual comorbidities 
and the exclusion of 13 variables owing to high levels 
of missing values, 21 variables remained.

We identified eight important predictors of mortality 
by using generalised additive modelling with multiply 
imputed datasets: age, sex, number of comorbidities, 
respiratory rate, peripheral oxygen saturation, Glas
gow coma scale, urea level, and C reactive protein 
(for variable selection process, see appendix 3). Given 
the need for a pragmatic score for use at the bedside, 
continuous variables were converted to factors with 
cut-off values chosen by using component smoothed 
functions (on linear predictor scale) from generalised 
additive modelling (appendix 4).

On entering variables into a penalised logistic 
regression model (least absolute shrinkage and 
selection operator), all variables were retained within 
the final model (appendix 5). We converted penalised 
regression coefficients into a prognostic index by using 
appropriate scaling (4C Mortality Score range 0-21 
points; table 2).

The 4C Mortality Score showed good discrimination 
for death in hospital within the derivation cohort (table 
3), with performance approaching that of the XGBoost 
model. The 4C Mortality Score showed good calibration 
(calibration intercept=0, slope=1, Brier score 0.170) 
across the range of risk and no adjustment to the model 
was required (appendix 11).

Model validation
The validation cohort included data from 22 361 
patients collected between 21 May 2020 and 29 
June 2020 who had at least four weeks of follow-up; 
743 (3.3%) patients had no outcome recorded and 
were considered alive. The overall mortality rate was 
30.1% (6729 patients). The median age of patients in 
the cohort was 76 (interquartile range 60-85) years; 
10 178 (45.6%) were female and 17 263 (77%) had at 
least one comorbidity (table 1).

Discrimination of the 4C Mortality Score in the 
validation cohort was similar to that of the XGBoost 
model (table 3). Calibration was also found to be 
excellent in the validation cohort: overall observed 
(30.1%) versus predicted (30.1%) mortality was 
equal (calibration-in-the-large=0) and calibration was 
excellent over the range of risk (slope=1, Brier score 
0.171; fig 2). The 4C Mortality Score showed good 
performance in clinically relevant metrics across a 
range of cut-off values (table 4).

Four risk groups were defined with corresponding 
mortality rates determined (table 5): low risk (0-3 score, 
mortality rate 1.2%), intermediate risk (4-8 score, 
9.9%), high risk (9-14 score, 31.4%), and very high 
risk (≥15 score, 61.5%). Performance metrics showed a 
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high sensitivity (99.7%) and negative predictive value 
(98.8%) for the low risk group, covering 7.4% of the 
cohort and a corresponding mortality rate of 1.2%.

Patients in the intermediate risk group (score 4-8, 
n=4889, 21.9%) had a mortality rate of 9.9% (negative 
predictive value 90.1%). Patients in the high risk 
group (score 9-14, n=11 664, 52.2%) had a mortality 
rate of 31.4% (negative predictive value 68.6%), while 
patients scoring 15 or higher (n=4158, 18.6%) had 
a mortality rate of 61.5% (positive predictive value 
61.5%). An interactive infographic is available at 
https://isaric4c.net/risk

Comparison with existing tools
We performed a systematic literature search and 
identified 15 risk stratification scores that could be 

applied to these data.6 22 28-40 The 4C Mortality Score 
compared well against these existing risk stratification 
scores in predicting in-hospital mortality (table 6, fig 
3, upper panel). Risk stratification scores originally 
validated in patients with community acquired pneu
monia (n=9) generally had higher discrimination for in-
hospital mortality in the validation cohort (eg, A-DROP 
(area under the receiver operating characteristic curve 
0.74, 95% confidence interval 0.73 to 0.74) and 
E-CURB65 (0.76, 0.74 to 0.79)) than those developed 
within covid-19 cohorts (n=4: Surgisphere (0.63, 0.62 
to 0.64), DL score (0.67, 0.66 to 0.68), COVID-GRAM 
(0.71, 0.68 to 0.74), and Xie score (0.73, 0.70 to 
0.75)). Performance metrics for the 4C Mortality Score 
compared well against existing risk stratification scores 
at specified cut-off values (appendix 13).

Table 1 | Demographic and clinical characteristics for derivation and validation cohorts of patients admitted to hospital 
with covid-19

Characteristics

Derivation cohort Validation cohort
No of patients (%)  
or median (IQR) Total No (%)

No of patients (%)  
or median (IQR) Total No (%)

Mortality in hospital 11 426 (32.2) 35 463 (100.0) 6729 (30.1) 22 361 (100.0)
Age (years)
  <50 4876 (13.8) 35 277 (99.5) 2808 (12.6) 22 361 (100.0)
  50-69 10 183 (28.9) — 5762 (25.8) —
  70-79 8017 (22.7) — 4951 (22.1) —
  ≥80 12 201 (34.6) — 8840 (39.5) —
Sex at birth
  Female 14 741 (41.7) 35 356 (99.7) 10 178 (45.6) 22 319 (99.8)
Ethnicity
  White 26 300 (82.2) 31 987 (90.2) 16 831 (84.9) 19 818 (88.6)
  South Asian 1647 (5.1) — 811 (4.1) —
  East Asian 271 (0.8) — 140 (0.7) —
  Black 1256 (3.9) — 769 (3.9) —
  Other ethnic minority 2513 (7.9) — 1267 (6.4) —
Chronic cardiac disease 10 513 (31.8) 33 090 (93.3) 7019 (34.0) 20 616 (92.2)
Chronic kidney disease 5653 (17.2) 32 834 (92.6) 3769 (18.4) 20 444 (91.4)
Malignant neoplasm 3312 (10.2) 32 556 (91.8) 2187 (10.8) 20 297 (90.8)
Moderate or severe liver disease 604 (1.9) 32 538 (91.8) 434 (2.1) 20 218 (90.4)
Obesity (clinician defined) 3414 (11.4) 29 829 (84.1) 2234 (12.2) 18 304 (81.9)
Chronic pulmonary disease (not asthma) 5830 (17.7) 32 990 (93.0) 3737 (18.2) 20 502 (91.7)
Diabetes (type 1 and 2) 8487 (26.0) 32 622 (92.0) 4275 (21.9) 19 511 (87.3)
No of comorbidities
  0 8497 (24.0) 35 463 (100.0) 5098 (22.8) 22 361 (100.0)
  1 9941 (28.0) — 6114 (27.3) —
  ≥2 17 025 (48.0) — 11 149 (49.9) —
Respiratory rate (breaths/min) 22.0 (9.0) 33 330 (94.0) 20.0 (8.0) 20 970 (93.8)
Oxygen saturation (%) 94.0 (6.0) 33 696 (95.0) 94.0 (5.0) 21 197 (94.8)
Systolic blood pressure (mm Hg) 124.0 (33.0) 33 637 (94.9) 129.0 (33.0) 21 073 (94.2)
Diastolic blood pressure (mm Hg) 70.0 (19.0) 33 568 (94.7) 73.0 (20.0) 21 026 (94.0)
Temperature (°C) 37.3 (1.5) 33 467 (94.4) 37.1 (1.5) 21 139 (94.5)
Heart rate (bpm) 90.0 (27.0) 33 405 (94.2) 90.0 (28.0) 20 991 (93.9)
Glasgow coma scale score 15.0 (0.0) 30 819 (86.9) 15.0 (0.0) 20 015 (89.5)
Haemoglobin (g/L) 129.0 (30.0) 29 924 (84.4) 127.0 (31.0) 18 480 (82.6)
White blood cell count (109/L) 7.4 (5.1) 29 740 (83.9) 7.6 (5.3) 18 362 (82.1)
Neutrophil count (109/L) 5.6 (4.6) 29 594 (83.5) 5.8 (4.9) 18 354 (82.1)
Lymphocyte count (109/L) 0.9 (0.7) 29 553 (83.3) 0.9 (0.7) 18 348 (82.1)
Platelet count (109/L) 216.0 (120.0) 29 582 (83.4) 223.0 (126.0) 18 281 (81.8)
Sodium (mmol/L) 137.0 (6.0) 29 522 (83.2) 137.0 (6.0) 18 409 (82.3)
Potassium (mmol/L) 4.1 (0.8) 27 224 (76.8) 4.1 (0.8) 16 926 (75.7)
Total bilirubin (mg/dL) 10.0 (7.0) 24 446 (68.9) 10.0 (7.0) 15 404 (68.9)
Urea (mmol/L) 7.0 (6.3) 26 122 (73.7) 7.3 (6.8) 16 863 (75.4)
Creatinine (μmol/L) 86.0 (53.0) 29 439 (83.0) 86.0 (56.0) 18 225 (81.5)
C reactive protein (mg/L) 84.9 (122.0) 27 856 (78.5) 78.0 (120.0) 17 119 (76.6)
Covid-19=coronavirus disease 2019; IQR=interquartile range.
Comorbidities were defined using the Charlson comorbidity index, with the addition of clinician defined obesity.
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The number of patients in whom risk stratification 
scores could be applied differed owing to certain 
variables not being available, either because of 
missingness or because they were not tested for or 
recorded in clinical practice. Seven scores could 
be applied to fewer than 2000 patients (<10%) in 
the validation cohort owing to the requirement for 
biomarkers or physiological parameters that were 
not routinely captured (eg, lactate dehydrogenase). 
Decision curve analysis showed that the 4C Mortality 
Score had better clinical utility across a wide range 
of threshold risks compared with the best performing 
existing scores applicable to more than 50% of the 
validation cohort (A-DROP and CURB65; fig 3, lower 
panel).

Sensitivity analysis 
Sensitivity analyses that used complete case data 
showed similar discrimination (appendix 7) and 

performance metrics (appendices 8 and 9) to analyses 
that used the imputed dataset. After stratification 
of the validation cohort into two geographical 
cohorts (validation north and south; appendix 14), 
discrimination remained similar for the 4C Mortality 
Score in the north subset (area under the receiver 
operating characteristic curve 0.77, 95% confidence 
interval 0.76 to 0.78) and south subset (0.76, 0.75 to 
0.77; appendix 6).

Finally, we checked discrimination of the 4C 
Mortality Score by sex and ethnic group (appendix 
10). Discrimination was the same in men (area under 
the receiver operating characteristic curve 0.77, 95% 
confidence interval 0.76 to 0.78) and women (0.76, 
0.75 to 0.77). Discrimination was better in all non-
white ethnic groups compared with the white group: 
South Asian (0.82, 0.80 to 0.85), East Asian (0.85, 
0.79 to 0.91), Black (0.83, 0.80 to 0.86), and other 
ethnic minority (0.81, 0.79 to 0.84).

Discussion
Principal findings
We have developed and validated the eight variable 
4C Mortality Score in a UK prospective cohort study 
of 57 824 patients admitted to hospital with covid-19. 
The 4C Mortality Score uses patient demographics, 
clinical observations, and blood parameters that are 
commonly available at the time of hospital admission 
and can accurately characterise the population of 
patients at high risk of death in hospital. The score 
compared favourably with other models, including 
best-in-class machine learning techniques, and 
showed consistent performance across the validation 
cohorts, including good clinical utility in a decision 
curve analysis.

Model performance compared well against other 
generated models, with minimal loss in discrimination 
despite its pragmatic nature. A machine learning 
approach showed a marginal improvement in dis
crimination, but at the cost of interpretability, the 
requirement for many more input variables, and the 
need for an app or website calculator that might limit 
use at the bedside given personal protective equipment 
requirements. The 4C Mortality Score showed good 
applicability within the validation cohort and consis
tency across all performance measures.

Comparison with other studies
The 4C Mortality Score contains parameters reflec
ting patient demographics, comorbidity, physiology, 
and inflammation at hospital admission; it shares 
characteristics with existing prognostic scores for  

Table 2 | Final 4C Mortality Score for in-hospital mortality in patients with covid-19. 
Prognostic index derived from penalised logistic regression (LASSO) model
Variable 4C Mortality Score
Age (years)
  <50 —
  50-59 +2
  60-69 +4
  70-79 +6
  ≥80 +7
Sex at birth
  Female —
  Male +1
No of comorbidities*
  0 —
  1 +1
  ≥2 +2
Respiratory rate (breaths/min)
  <20 —
  20-29 +1
  ≥30 +2
Peripheral oxygen saturation on room air (%)
  ≥92 —
  <92 +2
Glasgow coma scale score
  15 —
  <15 +2
Urea (mmol/L)
  ≤7 —
  7-14 +1
  >14 +3
C reactive protein (mg/dL)
  <50 —
  50-99 +1
  ≥100 +2
Covid-19=coronavirus disease 2019.
*Comorbidities were defined by using Charlson comorbidity index, with the addition of clinician defined obesity.

Table 3 | Model discrimination in derivation and validation cohorts

Model
Derivation cohort Validation cohort

AUROC (95% CI) Brier score AUROC (95% CI) Brier score
4C Mortality Score 0.786 (0.781 to 0.790) 0.170 0.767 (0.760 to 0.773) 0.171
Machine learning comparison* 0.796 (0.786 to 0.807) 0.191 0.779 (0.772 to 0.785) 0.197
AUROC=area under receiver operator curve; CI=confidence interval.
*Gradient boosting decision tree (XGBoost).
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sepsis and community acquired pneumonia but  
has important differences as well. No pre-
existing score appears to use this combination of 
variables and weightings. Altered consciousness 
and high respiratory rate are included in 
most risk stratification scores for sepsis and 
community acquired pneumonia,21 22 28 29 32 33 36  
while raised urea is also a common component.21 22 28  
Increasing age is a strong predictor of in-hospital 
mortality in our cohort of patients admitted with 
covid-19 and is commonly included in other existing 
covid-19 scores,37 41 42 together with comorbidity37 41 42 
and raised C reactive protein.40 43

Discriminatory performance of existing covid-19 
scores applied to our cohort was lower than reported in 
derivation cohorts (DL score 0.74, COVID-GRAM 0.88, 
Xie score 0.98).37 38 40 The use of small inpatient cohorts 
from Wuhan, China for model development might 
have resulted in overfitting, limiting generalisability 
in other cohorts.38 40 The Xie score demonstrated the 
highest discriminatory power (0.73), and included 
age, lymphocyte count, lactate dehydrogenase, and 
peripheral oxygen saturations. However, we were 
only able to apply this score for less than 10% of the 
validation cohort because lactate dehydrogenase is not 
routinely measured on hospital admission in the UK.

Owing to challenges of clinical data collection during 
an epidemic, missing data are common, with choice of 
predictors influenced by data availability.40 Complete 
case analysis often leads to exclusion of a substantial 
proportion of the original sample, subsequently 
leading to a loss of precision and power.44 However, 
the assessment of missing data on model performance 
in novel covid-19 risk stratification scores has been 
limited37 or unexplored,38 40 potentially introducing 
bias and further limiting generalisability to other 
cohorts. We found discriminatory performance in both 
derivation and validation cohorts remained similar 
after the imputation of a wide range of variables,41 
further supporting the validity of our findings.

The presence of comorbidities is handled differently 
in covid-19 prognostic scores; comorbidities might 
be included individually,40 42 given equal weight,37 
or found to have no predictive effect.38 Recent 
evidence suggests an additive effect of comorbidity 
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Fig 2 | Upper panel: distribution of patients across range of 4C Mortality Score in 
validation cohort; middle panel: observed in-hospital mortality across range of 4C 
Mortality Score in derivation cohort; lower panel: predicted versus observed probability 
of in-hospital mortality (calibration; red line) for 4C Mortality Score within derivation 
cohort

Table 4 | Performance metrics of 4C Mortality Score to rule out and rule in mortality at different cut-off values in validation cohort
Cut-off value No of patients (%) TP TN FP FN Sensitivity (%) Specificity (%) PPV (%) NPV (%) Mortality (%)
Rule out mortality
≤2 1001 (4.5) 6724 996 14 636 5 99.9 6.4 31.5 99.5 0.5
≤3 1650 (7.4) 6709 1630 14 002 20 99.7 10.4 32.4 98.8 1.2
≤4 2420 (10.8) 6672 2363 13 269 57 99.2 15.1 33.5 97.6 2.4
≤6 4121 (18.4) 6542 3934 11 698 187 97.2 25.2 35.9 95.5 4.5
≤8 6539 (29.2) 6223 6033 9599 506 92.5 38.6 39.3 92.3 7.7
≤9 8167 (36.5) 5911 7349 8283 818 87.8 47 41.6 90.0 10.0
Rule in mortality
≥9 15 822 (70.8) 6223 6033 9599 506 92.5 38.6 39.3 92.3 39.3
≥11 12 325 (55.1) 5483 8790 6842 1246 81.5 56.2 44.5 87.6 44.5
≥13 8069 (36.1) 4206 11 769 3863 2523 62.5 75.3 52.1 82.3 52.1
≥15 4158 (18.6) 2557 14 031 1601 4172 38 89.8 61.5 77.1 61.5
≥17 1579 (7.1) 1142 15 195 437 5587 17 97.2 72.3 73.1 72.3
≥19 381 (1.7) 305 15 556 76 6424 4.5 99.5 80.1 70.8 80.1
FN=false negative; FP=false positive; NPV=negative predictive value; PPV=positive predictive value; TN=true negative; TP=true positive.
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in patients with covid-19, with increasing number of 
comorbidities associated with poorer outcomes.16 In 
our cohort, the inclusion of individual comorbidities 
within the machine learning model conferred minimal 
additional discriminatory performance, supporting 
the inclusion of an overall comorbidity count.

Strengths and limitations of this study
The ISARIC WHO CCP-UK study represents a large 
prospectively collected cohort admitted to hospital 
with covid-19 and reflects the clinical data available 
in most economically developed healthcare settings. 
We derived a clinically applicable prediction score 
with clear methods and tested it against existing risk 
stratification scores in a large patient cohort admitted 
to hospital. The score compared favourably with other 
prognostic tools, with good to excellent discrimination, 
calibration, and performance characteristics.

The 4C Mortality Score has several methodological 
advantages over current covid-19 prognostic scores. 
The use of penalised regression methods and an event-
to-variable ratio greater than 100 reduce the risk of 
overfitting.45 46 The use of parameters commonly 
available at first assessment increases its clinical 
applicability, avoiding the requirement for markers 
often only available after a patient has been admitted to 
a critical care facility.4 47 Of course a model developed 
in a specific dataset should describe that dataset best. 

However, by including comparisons with pre-existing 
models, reassurance is provided that equivalent 
performance cannot be delivered with a simple tool 
already in use.

Additionally, in a pandemic, baseline infection 
rates and patient characteristics might change by 
time and geography. This motivated the temporal 
and geographical validation, which is crucial to the 
reporting of this study. These sensitivity analyses 
showed that score performance continued to be robust 
over time and geography.

Our study has limitations. Firstly, we were unable to 
evaluate the predictive performance of several existing 
scores that require a large number of parameters 
(for example, APACHE II48), as well as several other 
covid-19 prognostic scores that use computed 
tomography findings or uncommonly measured 
biomarkers.5 Additionally, several potentially relevant 
comorbidities, such as hypertension, previous myo
cardial infarction, and stroke,16 were not included in 
data collection. The inclusion of these comorbidities 
might have impacted upon or improved the 
performance and generalisability of the 4C Mortality 
Score.

Secondly, a proportion of recruited patients (3.3%) 
had incomplete episodes. Selection bias is possible 
if patients with incomplete episodes, such as those 
with prolonged hospital admission, had a differential 
mortality risk to those with completed episodes. 
Nevertheless, the size of our patient cohort compares 
favourably to other datasets for model creation. The 
patient cohort on which the 4C Mortality Score was 
derived comprised patients admitted to hospital who 
were seriously ill (mortality rate of 32.2%) and were of 
advanced age (median age 73 years). This model is not 
for use in the community and could perform differently 
in populations at lower risk of death. Further external 
validation is required to determine whether the 4C 
Mortality Score is generalisable among younger 
patients and in settings outside the UK.

Conclusions and policy implications
We have derived and validated an easy-to-use eight 
variable score that enables accurate stratification 
of patients with covid-19 admitted to hospital by 
mortality risk at hospital presentation. Application 
within the validation cohorts showed this tool 
could guide clinician decisions, including treatment 
escalation.

A key aim of risk stratification is to support 
clinical management decisions. Four risk classes 
were identified and showed similar adverse outcome 
rates across the validation cohort. Patients with a 
4C Mortality Score falling within the low risk groups 
(mortality rate 1%) might be suitable for management 
in the community, while those within the intermediate 
risk group were at lower risk of mortality (mortality 
rate 10%; 22% of the cohort) and might be suitable 
for ward level monitoring. Similar mortality rates 
have been identified as an appropriate cut-off value 
in pneumonia risk stratification scores (CURB-65 and 

Table 5 | Comparison of mortality rates for 4C Mortality Score risk groups across 
derivation and validation cohorts

Risk group
Derivation cohort Validation cohort

No of patients (%) No of deaths (%) No of patients (%) No of deaths (%)
Low (0-3) 2574 (7.3) 45 (1.7) 1650 (7.4) 20 (1.2)
Intermediate (4-8) 8277 (23.3) 751 (9.1) 4889 (21.9) 486 (9.9)
High (9-14) 18 091 (51.0) 6310 (34.9) 11 664 (52.2) 3666 (31.4)
Very high (≥15) 6521 (18.4) 4320 (66.2) 4158 (18.6) 2557 (61.5)
Overall 35 463 11 426 22 361 6729

Table 6 | Discriminatory performance of risk stratification scores within validation cohort 
(complete case) to predict in-hospital mortality in patients with covid-19

Model
Validation cohort*

No of patients with required parameters AUROC (95% CI)
SOFA 197 0.614 (0.530 to 0.698)
qSOFA 19 361 0.622 (0.615 to 0.630)
Surgisphere† 18 986 0.630 (0.622 to 0.639)
SMARTCOP 486 0.645 (0.593 to 0.697)
NEWS 19 074 0.654 (0.645 to 0.662)
DL score† 16 345 0.669 (0.660 to 0.678)
SCAP 370 0.675 (0.620 to 0.729)
CRB65 19 361 0.683 (0.676 to 0.691)
COVID-GRAM† 1239 0.706 (0.675 to 0.736)
DS-CRB65 18 718 0.718 (0.710 to 0.725)
CURB65 15 560 0.720 (0.713 to 0.728)
Xie score† 1753 0.727 (0.701 to 0.753)
A-DROP 15 572 0.736 (0.728 to 0.744)
PSI 360 0.736 (0.683 to 0.790)
E-CURB65 1553 0.764 (0.740 to 0.788)
4C Mortality Score 14 398 0.774 (0.767 to 0.782)
AUROC=area under the receiver operating characteristic curve; covid-19=coronavirus disease 2019.
See appendix 13 for other metrics.
*Available data.
†Novel covid-19 risk stratification score.
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PSI).21 22 Meanwhile patients with a score of 9 or higher 
were at high risk of death (around 40%), which could 
prompt aggressive treatment, including the initiation 
of steroids49 and early escalation to critical care if 
appropriate.
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